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Quantitative measure of folding in two-dimensional polymers
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The degree of folding of a single three-dimensional~3D! polymer configuration is a general concept asso-
ciated with the pattern of interpenetrations between chain loops. In the present context, this notion applies to
the state of a rigid chain, regardless of the polymer being permanently or only temporarily entangled. Folding
features represent an important aspect of macromolecular shape, one whose characterization must take into
consideration both the 3D geometry and the bond connectivity of the polymer. In this work, we present a
measure of folding complexity for planar objects. These systems include self-avoiding walks on planar lattices
used for modeling 2D~adsorbed! polymers. In 3D chains, folding patterns are usually compared in terms of the
number of bond-bondprojectedcrossings, averaged over all rigid projections~the so-calledmean overcrossing
number!. The characterization of molecular shape in 2D systems must be based on different notions since
bond-bond crossings may not occur. Here, we generalize the concept of ‘‘overcrossings’’ as a descriptor of
folding complexity in 2D structures. We show that the resulting molecular shape descriptor exhibits a power-
law scaling with the number of monomers, both inregular conformers and in a continuum ofrandomcon-
figurations. The method can be applied to study the adsorption of polymers with various topologies, as well as
the complexity of random structures, such as those in crack patterns, soap froths, and other cellular decompo-
sitions of the plane.@S1063-651X~99!11303-5#

PACS number~s!: 87.15.By, 05.50.1q, 02.70.Lq
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I. INTRODUCTION

Under weak interactions, molecules can conserve cer
shape featuresin spite of changes in nuclear positions. Th
situation is found in the electrostatic recognition betwee
ligand and its receptor, as well as in the response of polym
to flow, grafting, and confinement in nanopores. A quant
tive measure ofmolecular shapeis relevant to computer
aided design of new materials, including pharmaceut
drugs, plastics, and lubricants. Therefore, a great deal o
fort has been devoted to building descriptors of polym
shape.

In this work, we address a particular aspect of this iss
the characterization of ‘‘folding features’’ for macromo
ecules on two-dimensional~2D! surfaces. These models a
commonly used to study adsorbed polymers, as well as p
transitions in grafted, confined, or compressed polymers@1#.
Two-dimensional random walks are also used to model
ordered systems, including random cellular structures s
as those found in crack patterns produced by thermal sh
@2# and soap froths@3#. In addition, 2D chains are found i
phenomena modeled by two-dimensional percolation the
@4#, including liquid diffusion, crystal growth on a surfac
formation of gels, distribution of oil and gas inside poro
rocks, spreading of forest fires, and dielectric breakdown
this work, we restrict ourselves to the analysis of 2Dlinear
polymers. Nevertheless, the approach can be extende
study 2D structures with different topologies.

Whereas ‘‘structure’’ is expressed in terms of chemi
composition and nuclear geometry, ‘‘shape’’ can be qua
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fied by studying electron density surfaces@5,6# or molecular
space curves@6,7#. In the latter case, one can make use
topological or geometrical properties of the curves. In ord
to discriminate between polymer configurations and ass
their shape stability, geometrical descriptors are prefera
@7#. While molecular size@8,9# and anisometry@10# descrip-
tors rely on the nuclear positions, folding features take i
account the bonding pattern~or ‘‘chain connectivity’’!.
These properties characterize how chain loops distribut
space and interpenetrate each other. Here, we deal with
characterization of folding complexity of asinglemacromol-
ecule. In the case of a 3D polymer, these features are c
monly referred to as ‘‘self-entanglements.’’ This broad term
encompasses the polymer chainspermanently~i.e., topologi-
cally! self-entangled, as well as those behaving as s
entangled in a kinetic sense~i.e., temporary or ‘‘geometri-
cal’’ entanglements!. In 2D polymers, this terminology may
not be appropriate since these chains are not entangled i
usual sense. However, the basic issue remains: 2D p
mers exhibit folding features stemming from the distributi
of loops on the plane. Below, we present a definition
‘‘folding complexity’’ for 2D chains that generalizes that fo
3D polymers.

In 3D polymers, chain folding can be described in term
of thebond-bond crossings~or ‘‘overcrossings’’! in 2D pro-
jections of polymer backbones@11–13#. The mean over-
crossing number, denoted byN̄, is the number of bond-bond
crossings in a 2D~rigid! projection of the backbone, aver
aged over all possible projections in three-space. Rec
studies indicate that the value ofN̄ averaged over all acces
sible configurations~denoted bŷ N̄&) is a ‘‘weak topological
descriptor’’ of knot complexity, correlating with the gel dif
fusion velocity of knotted DNA@14#. Its main analytical
property is the occurrence of scaling with respect to the nu

ent
d-
4209 ©1999 The American Physical Society
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4210 PRE 59GUSTAVO A. ARTECA AND SHUANGXI ZHANG
ber of monomers,n. Numerical work on lattice polymers
@15#, off-lattice polymers @16#, and protein native state
@16,17# shows that

^N̄&'nb, n@1, ~1!

with an exponentb between 1.1 and 1.4. These estimates
consistent with results from a path-integral representation
N̄, which gives arigorousupper bound in knots (b< 4

3 ) @18#
and aconjecturedupper bound for polymers with exclude
volume (b,1.4) @19#.

Scaling is an important property in a shape descriptor
allows one to classify polymers inuniversality classes,
whereby molecules with different chemical compositio
share similar shape features. A well-known example is
scaling in the configurationally averaged mean radius of
ration, ^RG

2 &1/2, which follows the law ^RG
2 &1/2;nn$1

1O(n2D)% @20#, wheren is the size exponentand D is the
first correction-to-scaling exponent. The size exponent
pends on the polymer-solvent interaction and thedimension-
ality of space,D. In dilute solutions of 3D linear polymer
(D53), the behavior is as follows:~i! n5 1

2 in an ideal
solvent ~or at theu temperature! @8,9#, ~ii ! n5 1

3 in a poor
solvent~when the polymer collapses to a spheroid!, and~iii !
n50.58860.002 in a good solvent~when the polymer re-
sembles a self-avoiding walk! @21#. In 2D polymers (D
52), the scaling behavior is still in debate. Whereas
have exactlyn5 1

2 in a poor solvent, the values in ideal co
ditions and in a good solvent are believed to ben5 4

7 @22#
andn5 3

4 @23#, respectively.
In summary, while the properties of 3D polymers in term

of molecular size and folding are now known, the analysis
2D polymers has been restricted so far to molecular s
@21–23# and anisometry@10#. In this work, we complete thei
description by introducing a measure of folding complex
for 2D polymers. We make two main contributions. First, w
present how the notion of ‘‘overcrossing’’ can be extend
to planar structures. The resultingN̄ function is the natural
generalization toD52 of the mean number of overcrossin
defined in three-space. Second, we establish the scaling
havior of N̄ in regular and random polymer conformations

II. FOLDING COMPLEXITY IN TWO-DIMENSIONAL
POLYMER BACKBONES

In three-space, ‘‘overcrossings’’ are the bond-bond int
sections observed in a projection along a~one-dimensional!
line of sight. Although 2D self-avoiding walksdo notexhibit
actual self-intersections, we can still define a similar sh
descriptor by computing thenumber of bonds intersecte
when a 2D polymer is observed along a one-dimensional
of sight on the molecular plane. The resulting ‘‘line-
intersection descriptor’’ is the rigorous extension of the n
tion of ‘‘overcrossings’’ from three to two dimensions.

In two dimensions, ann-node chain is represented par
metrically as a curveW(t), with node coordinates$W i
5(Xi ,Yi)%. When taking the chain’s centroid as the orig
O, the node coordinates will be denoted as$wj8
5(Xj8 ,Yj8)%. Line-of-sight directions can then be taken
the diameter linesof the smallest circle, centered atO, that
completely encloses the polymer. Letp1 be the first of
e
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these directions. The number of intersectionsM int between
p1 and the molecular backbone can be used to define afor-
mal ‘‘two-dimensional’’ number of overcrossings for a give
‘‘projection’’ line. To produce a description consistent wit
the one for 3D polymers, we define that a 1D rod hasno
overcrossings. Since a diameter line that isnot parallel to the
rod must intersect the latter once, then we chooseN5M int
21 as the formal ‘‘overcrossing number’’ for that diamet
line. Note that the case where a linep1 coincides with a bond
has zero measure with respect to themean Nvalue.

The algorithm to computeN is simple. Let A
5(XA

(1) ,YA
(1)) and B5(XB

(1) ,YB
(1)) be the coordinates defin

ing the diameter linep1 . Now, we establish whether thep1
line intersects a generic bond between consecutive no
wi 218 andwi8 . An intersection exists if, and only if, the equa
tions

X5t1~Xi82Xi 218 !1Xi 218 5t2~XB
~1!2XA

~1!!1XA
~1! , ~2a!

Y5t1~Yi82Yi 218 !1Yi 218 5t2~YB
~1!2YA

~1!!1YA
~1! , ~2b!

have solutions fort1P@0,1# and t2P@0,1#, simultaneously.
The pair~X,Y! corresponds to the intersection point. By sol
ing Eqs. ~2! for i 52,3,..., we can compute the number
overcrossingsN(1) for the diameter linep1 . Finally, by re-
peating this procedure form different diameters lines (m

@1), the mean number of overcrossingsN̄ becomes

N̄5
1

m (
j 51

m

N~ j ! , ~3!

whereN( j ) is the number of overcrossings for thej th diam-
eter line. In addition, we can define an overcrossing proba
ity for a 2D chain, as it is done in 3D chains@12#. If mN is
the number of diameter lines producingN overcrossings, the
probability of observingN ‘‘overcrossings’’ isAN'mN/m ~a
strict equality form→`). With this definition, we have for a
linear chain

N̄5 (
N50

n22

NAN , ~4!

where maxN5n22 is the maximum possible overcrossin
number in a 2D linear chain.~Since the chain hasn21
bonds, any diameter line cannot produce more thann21
intersections.! In random walks, this maximum is usually no
reached, and many of theAN are zero. As commented befor
the value ofN̄ in Eq. ~4! is simply a geometrical property o
planar curves, and it mustnot be interpreted in terms of the
notion of overcrossings in three-space. However, the de
tion of N̄ given here constitutes the proper extension of
concept of overcrossings to the case of 2D figures.

The properties of the overcrossing probability distributi
are simple: ~a! An ‘‘ unfolded’’ 2D chain ~e.g., a 1D rod!
has an$AN% distribution with a dominant peak atN50, and
a small mean overcrossing number;~b! a ‘‘ folded’’ 2D chain
~e.g., a compact 2D coil! has manyN@1 values contributing
to the overcrossing probabilities, and thus a large value
N̄. As a result,N̄ can be used to monitor globule�coil or
coil�rod shape transitionsin 2D chains, as it is done for 3D
chains@24#. Accordingly, we considerN̄ to be ageometrical
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PRE 59 4211QUANTITATIVE MEASURE OF FOLDING IN TWO- . . .
measureof ‘‘2D folding complexity’’ ~or, loosely speaking
‘‘ 2D entanglements’’ !. Using an analogy with single 3D
polymer chains, we could say that a compact 2D s
avoiding random walk is more ‘‘entangled’’~in the sense
above! than the linear rod.

Figure 1 illustrates these ideas with two configurations
a model polymer, where the chain is represented as a
off-lattice self-avoiding walk with excluded volume intera
tion. The polymer is built as a sequence of bonds, linkinn
nodes with constant bond lengthb and random bond angles
These configurations are subject to two constraints:~i!
there are no bond-bond intersections during the construc
of the walk ~i.e., self-avoidance!; ~ii ! nodes not linked by
bonds cannot be at a distance smaller thanr ex ~i.e., a radius
of excluded volume!. In this scheme, all random walks ap
proach asingle configuration~the 1D rod! if r ex→2b. Note
also that the folding properties depend on the dimension
radius of the excluded volumey5r ex/2b, yP@0,1#, and not
on the individual values ofb and r ex. Low y values corre-
spond to chains embedded in ‘‘poor’’ solvents, whereas la
y values correspond to ‘‘good’’ solvents.

Figure 1 shows two chain configurations withn590 and
y5 1

3000. The top diagram gives the distribution$AN% for an

FIG. 1. Distribution of overcrossing probabilities~‘‘overcross-
ing spectra’’! for two random configurations of a 2D polymer wit
y5

1
3000 andn590. @The top diagram corresponds to an ‘‘open

conformer~inset!, characterized by highAN values for lowN. The
bottom diagram corresponds to a ‘‘closed’’ configuration of t
same polymer~inset!. This conformer exhibits larger overcrossin
numbers.#
f-

f
D

on

ss

e

‘‘open’’ configuration. As expected, low overcrossing valu
dominate~here,N50 and 1!. The bottom diagram present
the results for a compact conformation. In this case, all ‘‘p
jections’’ produce overcrossings~i.e., A050). While the
most frequent number of overcrossings isN52 ~35%!, val-
ues up toN'20 are found.

We can compute the average folding features in 2D po
mers by evaluating the configurationally averaged me
overcrossing number, denoted by^N̄&. Accurate estimations
of ^N̄& can be derived by sampling 2D walks with a ‘‘naive
Monte Carlo approach@20#. In our case, partial chains tha
fail the conditions of self-avoidance or excluding volume a
rejected and not continued. The resulting set contains un
related conformers. The results forN̄ in regular and random
walks are discussed in the following sections.

We note here another property. Ifn@1, one can replaceN̄
by an integral@cf. Eq. ~4!#. From the mean value theorem fo
integrals and the normalization of$AN%, we have

N̄>E
0

n22

NANdN<max$N%E
0

n22

ANdN5n22. ~5!

Equation ~5! implies a bound onN̄ ~and thus^N̄&). As a
result, if a scaling relation such as Eq.~1! exists in 2D linear
polymers, we deduce thatb<1. The following sections tes
this property in exact results for regular conformers and
numerical simulations for random conformers.

III. SCALING BEHAVIOR OF SELF-ENTANGLEMENTS
IN REGULAR 2D POLYMER CONFIGURATIONS

We consider first the behavior of shape descriptors
regular, as opposed torandom, conformations. In regular
conformations, bond and dihedral angles take periodic
repeated values. In 3D proteins, these conformations inc
elements of secondary structure, e.g.,a helices, 310 helices,
andb strands@25#. The mean shape properties of these co
formers are known in terms of the number of monomern

@26#. In a helices and strands,^N̄& exhibits linear scaling
@i.e., b51 in Eq.~1!#. It is unclear whether a similar scalin
is found in two dimensions. Here, we address this ques
by using a family of simple regular conformations.

The all-trans linear chain ~a ‘‘zigzag-like’’ polymer!
serves as a 2D model of ana helix. This polymer is defined
by a constant bond length,b, and a constant bond angle,F.
If the first node is the origin,W15(0,0), the coordinates
W j5(Xj ,Yj ) of the remaining nodes are

Xj5~ j 21!b sin
F

2
, j 51,2,3,...;

Yj5H b cos
F

2
, j 52,4,...

0, j 51,3,... .
~6!

Figure 2 shows an example, withn510 monomers. Using
these coordinates, we can compute the mean overcros
number as discussed in Sec. II. In this particular case,
chain model is simple enough to allow theexactcomputation
of overcrossing probabilities and the determination of
scaling behavior forN̄.
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The exact evaluation ofAN is as follows. Consider the
chain in Fig. 2 withn510. LetQN be the angle~in radians!
for the circular sector comprising the diameter lines lead
to N overcrossings. The overcrossing probabilities are t
fractional areas of the circle:

FIG. 2. Regular~all-trans! conformation of a linear polymer~a
model of a 2D helix!. @The regions indicated asQN define the
areas where the diameter lines intersect the chainN11 times. The
overcrossing probabilities are simplyAN5QN /p.#
r-

n-
e

u

t

q

g
s

AN5QN /p. ~7!

It is clear that, in regular all-transchains,N can only be even
whenn is even, whereasN is odd if n is odd. In Fig. 2, only
N50,2,4,6,8 are possible. Note that theQN values, forN
,n22, are unaffected when the chain is lengthened by t
bonds. The last angle,Qn22 , is given as: Qn225p
2(Q01Q21¯1Qn24), evenn.

We analyze now the case ofQN for even-n chains.~The
analysis of oddn is similar, the only difference being a shi
in the originO.! Using center-of-mass coordinates,

Xj85Xj2~n21!
b

2
sin

F

2
, Yj85Yj2

b

2
cos

F

2
, ~8!

we can determineQ0 from the position of the (n/2) node and
the @(n/2)12# node ~cf., Fig. 2!. From the scalar produc
cosQ05wn/28 •wn/2128 /iwn/28 iiwn/2128 i , we obtain

Q05arccosH cos2
F

2
23 sin2

F

2

S cos2
F

2
19 sin2

F

2 D 1/2J . ~9!

A similar analysis can be used for all otherQN ~and thusAN)
values. After some algebra, the general form for the ov
crossing probabilities is found to be
AN5
1

p
arccosH cos2

F

2
1~N21!~N13!sin2

F

2

Fcos2
F

2
1~N21!2 sin2

F

2 G1/2Fcos2
F

2
1~N13!2 sin2

F

2 G1/2J , ~10!
ilar

r as
where N50,2,4,...,n24. For the largest number of ove
crossings (N5n22), we have

An22512 (
N50

n24

AN . ~11!

Finally, theexact N̄value is computed with Eqs.~4!, ~10!,
and ~11!. The N̄ values derived with these formulas are i
distinguishable, within the error bars, from those obtain
numerically withm510 007 projections.

Using this formulation, we have computedN̄ for n
<15 000, in order to detect scaling behavior. From o
results, compiled in Fig. 3, it is clear thatN̄ follows a
logarithmic scaling law, N̄} ln n, a result that is consisten
with Eq. ~5!. A linear regression usingF560 ° and n
5500,1000,1500,...,15000 gives

N̄'~1.103160.0001!ln n for n@4, ~12!

with 95% confidence. The prelogarithmic constant in E
~12! depends on the bond angleF. As the all-trans chain
d

r

.

approaches the linear rod, the constant decreases. A sim

regression for F5150° produces N̄'(0.170 72
60.000 05)lnn for n@4.

FIG. 3. Logarithmic scaling of the mean overcrossing numbe
a function of the number of monomers in an all-trans linear chain.
~Results are shown forn even,n>4 andF560°.)
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The analysis presented in this section leads us to two
portant conclusions.

~a! The scaling behavior ofN̄ depends on the spatial d
mensionD. WhereasN̄ increases as;nb for random and
regular 3D conformers, the same need not be true in
space.

~b! The scaling law in Eq.~12! is well defined even for
rather short chains. The correlation observed in Fig. 3 ca
be obtained from chains even as short asn520. This obser-
vation suggests that it might be sufficient to use medi
sized chains (n,100) to obtain a good representation
scaling behavior for the entanglements in 2D polymers.

The properties ofN̄ in regular conformers are contraste
in the next section with the scaling behavior of its config
rational average,̂N̄&, in random chain polymers.

IV. SCALING BEHAVIOR OF ŠN̄‹ FOR SELF-AVOIDING
WALKS IN THE CONTINUUM

We have computed the configurational average of
mean number of overcrossings,^N̄&, using off-lattice 2D
self-avoiding walks with variable excluded volume and co
stant bond length. The chains are specified by two par
eters, the number of monomersn and the reduced exclude
volume y5r ex/2b. For every ~n,y! pair, shape descriptor
were evaluated on an ensemble of 103 uncorrelated conform-
ers, collected by the Monte Carlo search discussed in Se
This procedure yields reliable independent structures, tho
it suffers from strong conformational attrition asn or y in-
creases@20#. Thus, evaluating mean properties becomes p
hibitive for chains withn.100, and for short chains with
y.0.5. For example, aty5 2

3 and n515 there are;7
3103 rejected conformers for every one accepted. Aty5 2

3

and n530, the yield diminishes to;33108 rejected con-
formers for each one accepted. The detailed behavior of
mean attrition rate as a function ofy andn is given elsewhere
@27,28#.

We have computed̂N̄& for a wide series ofy values (y
5 1

3000,
1
6,

1
3,

1
2,

2
3,

5
6, and 11

12!. At low excluded volume (y
5 1

3000), simulations were carried out for polymer lengths
n510,15,20,...,80. At high excluded volume (y5 11

12 ), only
results withn55,6,7,...,15 were possible. In addition to th
descriptor of folding,N̄, we have computed a number o
descriptors of molecular size~the mean radius of gyration
^RG

2 &1/2, the span, and the end-to-end distance in the cha!.
The well-known scaling behavior of these descripto
(^RG

2 &1/2;nn) can be used as a benchmark to test the r
ability of our sampling. With the same configurations used
calculate^N̄&, we obtainedn'0.7560.02, for all y,0.5.
This result, obtained consistently for all molecular size d
scriptors, is in good agreement with the accepted exact
sult, n5 3

4 @23#. In addition, our results fory.0.5 ~where
chains are too short! can be well described by a leadin
asymptotic termn5 3

4 and a subdominant correction-to
scaling term, with exponentD'n. This value is also consis
tent with results in the literature, which indicate 0.66<D
<1.2 @20#. These tests suggest that our simulations foy

,0.5 could be already in the asymptotic regime for^N̄&. As
well, these observations agree with the results in Sec.
-
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which indicate thatn.20 may be enough to obtain the lea
ing asymptotic behavior in 2D polymers.

Using the above sampling, we have studied t
asymptotic behavior of̂N̄&. SinceN̄ vanishes forn52, a
reasonable scaling law for 2D chains is@cf. Eq. ~1!#

^N̄&;a~y!~n22!b, ~13!

where thea(y) must vanish fory→12 ~i.e., when the chain
becomes a rod!.

Figure 4 tests Eq.~13! with a logarithmic plot ln̂N̄& ver-
sus ln(n22). The results in Fig. 4 are consistent with tho
for molecular size descriptors. First, the asymptotic regi
appears to have been reached fory5 1

3000,
1
6, and 1

3, precisely
the cases where the mean radius of gyration shows the
rect scaling behavior. Second, the results fory.0.5 also ap-
pear to be approaching the same asymptotic regime, de
the short chains used.

With the results in Fig. 4, we have estimated the scal
exponentb ~with 95% confidence intervals! as follows.

~a! Linear correlations for chains withn.25 give b
50.3760.02, 0.3660.03, and 0.4360.04, for y5 1

3000,
1
6,

and 1
3, respectively. Note that each of these fittings has

different number of points.
~b! Linear correlations using the eight longest compu

chains give exponentsb50.3960.04, 0.4160.03, and 0.46
60.02, fory5 1

3000,
1
6, and 1

3, respectively.
These results do not rule out a dependence of the ex

nentb with y. However, considering the trends in Fig. 4 fo
y.0.5, such a dependence appears to be small, as is als
case for 3D chains@15,16#. From the above values, we ca
make a conservative estimate:

FIG. 4. Power-law scaling of the configurationally averag

mean overcrossing number^N̄& as a function of the number o
monomers in self-avoiding walks with variable excluded volum
@The letters indicate different values of the excluded volume v
abley5r ex/2b, wherey5

1
3000 ~a!, 1

6 ~b!, 1
3 ~c!, 1

2 ~d!, 2
3 ~e!, 5

6 ~f!, and
11
12 ~g!.#
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4214 PRE 59GUSTAVO A. ARTECA AND SHUANGXI ZHANG
b50.4060.05 ~14!

in 2D self-avoiding walks with excluded volume, which is
accord with the bound in Eq.~5!.

The estimation of the preexponential functiona(y) is
more difficult. Our simulations appear to be represen
semiquantitatively by adoptinga(y)'exp$2y2P(y)/(12y)%,
whereP(y) is a smooth, bound function of the reduced e
cluded volume.

V. FURTHER COMMENTS AND CONCLUSIONS

In this work, we have introduced the concept of foldin
complexity for 2D polymers, and provided a quantitati
measure in terms of a geometrical property of planar curv
The resulting ‘‘line-intersection descriptor,’’N̄, conveys the
folding features in a 2D polymer. By using an analogy w
3D curves, we could state thatN̄ measures the equivalent t
a ‘‘degree of self-entanglement’’ for a polymer adsorb
onto a surface. The present approach is general, and it ca
applied without major modification to different topologie
e.g., branched polymers, 2D cellular decompositions of
plane, or 2D networks. The latter case is particularly int
esting, because the size and anisometry of a network
figuration do not change as its connectivity is modified. A
cordingly, descriptors of folding complexity~e.g., the mean
overcrossing number! are especially convenient for analy
ing networks, since they describe shape features relate
both connectivityandgeometry. Descriptors relying only o
molecular geometry would not provide much useful inform
tion on these systems.

We have also established the qualitative scaling beha
of the descriptorN̄ in some regular and random 2D line
polymers. In random polymers with excluded volume,
have shown the occurrence of power-law scaling. As a res
a picture emerges where the descriptor^N̄& shares a key
J.
.
.

.

. E
,

d

-

s.

be

e
-
n-
-

to

-

or

lt,

property with molecular size descriptors such as the m
radius of gyration: the scaling exponent depends on the
mensionality of space. Results up to the present indicate
~i! the mean overcrossing number in 1D chains is indep
dent of the length~thus suggesting thatb50), ~ii ! the ‘‘en-
tanglement’’ scaling exponent for 2D chains isb50.40
60.05, and~iii ! the exponent for 3D chains isb51.260.1
@15,16#. Based on these values, we can conjecture thab
increases faster than linearly with the dimensionality
spaceD. From the results above, a rough fitting would ind
cateb;O„D(D21)….

Regular and random conformations provide a benchm
for the analysis of realistic 2D polymers with attractive a
repulsive monomer-monomer interactions. An interesting
cent development is the possibility to study the shape
protein backbones using 2D projections@29#. The Sammon
projection algorithm@30# represents an appealing choice, b
cause it minimizes the difference between the distance
trices in two and three dimensions. Consequently, the res
ing 2D projection conserves most of the original 3D foldin
features of a protein. By performing a systematic survey
2D protein shape, our method should provide the type
quantitative measures of homology between protein fo
needed in molecular engineering.

In closing, it should be noted that our formulation ca
also be adapted to theanalytical computation of mean over
crossing numbers in selected conformers. To this end,
can use a path-integral representation ofN̄ for 2D polymers
that is similar to the one used in 3D chains@18,19#. Details
of this approach will be discussed elsewhere.
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@21# G. A. Baker, Jr., B. G. Nickel, and D. I. Meiron, Phys. Rev.
17, 1365~1978!; J. C. LeGuillou and Z. Zinn-Justin,ibid. 21,
3976~1980!; J. Phys.~France! Lett. 46, L137 ~1985!; J. Phys.
nd

~Paris! 50, 1365~1989!; A. J. Guttmann, J. Phys. A22, 2807
~1989!; D. C. Rapaport,ibid. 18, 113 ~1985!; N. Madras and
A. Sokal, J. Stat. Phys.50, 109 ~1988!; B. Li, N. Madras, and
A. Sokal,ibid. 80, 661~1995!; J. S. Pedersen, M. Laso, and P
Schurtenberger, Phys. Rev. E54, R5917~1996!.

@22# B. Duplantier and H. Saleur, Phys. Rev. Lett.59, 539 ~1987!;
62, 1368 ~1989!; R. M. Bradley, Phys. Rev. A39, 3738
~1989!; M. Wittkop, S. Kreitmeier, and D. Go¨ritz, J. Chem.
Phys.104, 3373~1996!.

@23# B. Nienhuis, Phys. Rev. Lett.49, 1062~1982!.
@24# G. A. Arteca, Biopolymers35, 393~1995!; G. A. Arteca, Mac-

romolecules29, 7594~1996!; G. A. Arteca, J. Phys. Chem. B
101, 4097~1997!.
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